親愛的網友:
為確保您享有最佳的瀏覽體驗,建議您提升您的 IE 瀏覽器至最新版本,感謝您的配合。

靠AI徵人,多男性!-人工智慧是否藏有性別偏見?

2021/07/02 科技大觀園/文:陳亭瑋

2018年,亞馬遜宣布停止使用AI(artificial intelligence)篩選求職履歷,因為從招聘結果看來,這個AI居然嚴重的偏好男性。

2006年機器學習演算法(machine-learning algorithm)突破瓶頸,讓人工智慧在某些情況,足以模擬人類的判斷,提供資訊解讀加速作業流程,如影像診斷、關鍵字判讀、資訊推薦、外文翻譯等。此外亦常見以演算法處理排序、挑選內容、過濾資訊等工作,經手人們的決策與信息流通。但快速便捷的同時,多數人不假思索信賴的演算法,也可能會反映強化已經存在的價值偏差,甚至夾帶嚴重的歧視偏見。

 圖/unsplash
圖/unsplash

如同開頭的案例,2018年亞馬遜的AI演算法以過去十年間招聘資料進行訓練,最終演算法「忠實」呈現了招聘男女不平均,由於難以確保該演算法對於性別的公平性,亞馬遜只得棄用(1)。也有資料學家指出,許多商用的臉孔辨識系統擅長辨識白人男性,換個性別膚色就會失靈(2)。這些偏差的起因,都與訓練資料的取樣偏誤有關。如何在導入應用之前,發覺演算法失靈以避免可能的不公,將是未來科技社會發展的重要課題(3)。

用上人工智慧之前:用在哪?該怎麼用?

而除了前述源自訓練資料造成的不公,如人工智慧這類科技工具該用在何處,該如何設計才能稱得上妥適,也存在探討的空間。

最新的一個爭議案例,發生在印度北方邦的首府勒克瑙(Lucknow)。當地政府規劃於今(2021)年在已知的200個性騷擾熱點設立監視錄影器,佈署AI人臉辨識進行監看,偵測女性出現困擾表情,即傳送警報予警察局(4)。

余貞誼認為,人臉辨識科技應用的解讀魔鬼藏在細節裡,需要深刻探究背後的執行與設計邏...
余貞誼認為,人臉辨識科技應用的解讀魔鬼藏在細節裡,需要深刻探究背後的執行與設計邏輯。 圖/曹盛威攝影

「第一個顧慮的點,是要如何辨認什麼是被性騷擾後不適或是驚恐的表情?」高醫大性別所的余貞誼認為,這類科技應用的解讀魔鬼藏在細節裡,需要深刻探究背後的執行與設計邏輯。

印度率先於各國考慮採用AI於性騷擾事件,背景脈絡與其AI人才的發展息息相關。成功前例便有2018年4月印度警方使用臉部辨識軟體,根據婦女和兒童發展部(The Ministry of Women and Child Development)與失蹤兒童追蹤網站(Track Child)提供的照片,在四天之內追蹤到將近3000名失蹤兒童的紀錄(5)。爾後也傳出意圖打造全球最大的臉部辨識系統於刑事系統中,因此有此應用構想確實有跡可循。

但是此次應用人臉辨識系統於警方的監視錄影機,很多執行細節並未審慎考量。非政府組織網路自由基金會(Internet Freedom Foundation)就指出,監看臉部表情並不妥當,除了極可能失誤判斷,也形同監視路過女性的一舉一動。

余貞誼分析,透過官方演算法篩選「受威脅」的女性表情,等同認定這類的事件存在固定的「被害者」形象,除了疏於保護「不夠典型」的受害者,也可能變相為另一種受害人責怪的材料,強化助長「理想受害者」的形象。

「用這樣子的方法,會帶來的爭議,比解決的問題還要多。」余貞誼指出,公權力錯誤的使用,視同將此演算法所得的結果視為「證據」,有可能導致惡性循環迴圈(pernicious feedback loop),從出發點即隱含了歧視觀點,並持續強化歧視觀念。政府單位使用演算法需要審慎評估其後果。

印度本次的爭議中,選擇攝影機「看向誰」本身,就已經體現了權力立場,無論是偵測哪個性別,如此的設計都存在著嚴重瑕疵。而更多的問題還包括:這類公權力涉入的演算法,被觀看、紀錄、分析的人本身,其隱私資料是否有受到足夠的保護?有哪些人可以接觸到資料?收集的資料是否有足夠的保護設計?這些都是未來任何牽涉廣泛的科技方案,無論是設計者或是使用者,都必須要審慎考慮的問題。

官方演算法篩選「受威脅」的女性表情,除了疏於保護「不夠典型」的受害者,也可能強化...
官方演算法篩選「受威脅」的女性表情,除了疏於保護「不夠典型」的受害者,也可能強化「理想受害者」的刻板印象。 圖/unsplash

看見科技中的性別議題:誰的設計,誰能得利?

數位科技產品推出,設計者往往難以意識自身經驗的偏差,而使用者也有可能後知後覺。該如何察覺數位產品中可能存在的偏差?余貞誼介紹了《數據女性主義》(Data feminism,暫譯(6)) 裡提出的七個原則,由提問來檢視科技產品中的權力:是誰(或不是誰)從事相關技術工作?哪些族群的目標具有優先性?誰會從中獲利?又會有誰因此受忽略或傷害?

「要先問出『誰』,這個關鍵問題。」余貞誼認為,由此可一窺各種特權,包括了性別議題,如何融入數據產品。

舉例來說,性愛機器人(Sex Robot)的爭議,很明顯可以反映出優先以男性視角為中心的產品設計。最早推出的性愛機器人如美國公司Realbotix的Harmony,其設計服務的對象明顯是異性戀白人男性,除了存在固化的性別腳本,也有科學家指出可能會帶來心理與道德上的隱憂(7)。

光是決定優先推出的產品、是怎樣的樣貌,就反映了某種權力分配的議題。

設計者優先考慮自己的視角無可避免,但如此一來,蓬勃發展的AI產業就更值得密切關注。2018年,世界經濟論壇(World Economic Forum, WEF)全球性別差距報告,指出全球的AI從業人員有78%為男性組成,性別差距懸殊。AI快速蔓延各領域應用的此時此刻,如果未能在密切檢視主要由男性視角出發的AI應用,將可能擴大既存的性別差距。

那麼,研發AI的時候,該如何避免複製社會上常見的不平等呢?

2018年二十國集團女性會議(Women 20, W20)上,全球資訊網基金會(World Wide Web Foundation)提出了運作AI的兩個注意事項,以避免帶有性別意識或其他偏見。

首先是應注意訓練資料的平等程度,除了資料的數量,更應該注重質量,尤其檢視樣本中是否存在特定「數據匱乏」(data desert)的情況,使AI缺乏資料無法解讀特定族群。不只性別資料數量應當平均,還包括應納入邊緣與少數族群的資訊。

運作AI應注意訓練資料的平等程度,除了資料的數量,更應該注重質量。 圖/Pexe...
運作AI應注意訓練資料的平等程度,除了資料的數量,更應該注重質量。 圖/Pexels

其次,應該找出系統性的偏誤,利用開放資料與邏輯運算進行修正。透過擴大資訊的透明度、訂定相關守則並且開放其它意見的溝通與監督,才有機會避免系統性的偏誤。如前述亞馬遜的履歷AI所根據的資料即具備此類系統性的問題,W20並認為可透過政府單位規範提升AI服務的資訊透明度,訂立準則進行監督來修正相關問題。

最後余貞誼補充,由於資料科學家常缺乏對於現場脈絡的理解,《數據女性主義》以及Google Brain的數據科學家莎拉‧虎克(Sara Hooker),均提出研發AI等數據計畫,應當重視「接地氣」的知識,納入多元參與才有機會打造出更有效、更有創意的方案。

以性別議題做為試金石,避免人工智慧放大歧視的未來

除了AI的從業人員應當銘記在心,自身立場可能帶來的偏差,AI使用者對於資料來源、資訊與現實間的差距,也應當有一定的體認,甚至提供回饋貢獻。舉例來說,於2009年發表於Nature風靡一時的「Google 流感趨勢預測」(Google Flu Trend),就在後續幾年間被證實沒有預測效力。當演算法採取間接資料做出推論,使用者對於原始資料與演算法屬性應該有足夠的認識,方不至以管窺天差之千里。

未來設計機器人應該避免強化性別刻板印象。 圖/Pexels
未來設計機器人應該避免強化性別刻板印象。 圖/Pexels

討論到AI、社群媒體或科技將如何型塑我們的未來,余貞誼主張,任何科技發展的後續效應,主要是人群、情境與科技產物互動的綜合效果,不宜輕易落入「科技決定論」。余貞誼曾以關鍵字分析批踢踢的厭女與性別挑釁,認為由於社群媒體的匿名性以及極化特性,容易聚集極端意見,加上與現實間的界線消弱同情心、倫理規範模糊,因而容易聚集呈現激烈的偏見言論。相同的科技物質基礎不見得會出現同樣結果,仍要端看人與情境的最終互動。

近年來,經諸多有識者的關注,科技設計於性別議題的敏感度逐漸增加。Google在2020年2月公開宣告, Google Cloud Vision API取消照片辨識「男性」「女性」性別標籤,希望以此避免對AI灌輸性別偏見(8)(9)。而史丹佛大學歷史系的隆達·希賓格 (Londa Schiebinger) 設立的「性別化創新」網站,也提供科學家與工程師可運用的性別/分析實用方法。如未來設計機器人該如何避免強化性別刻板印象,並列出六種可同時顧及社交投射需求的做法,包括挑戰既有的刻板印象、客製化設計、設計無性別或性別流動的機器人等(10)。

「討論性別,其實就是討論權力,那是一種很具象的『看見權力』的方式。」余貞誼說明從事性別研究的起點,權力有時候很抽象,由性別的角度能協助將之具像化,因而察覺其分佈與影響。

科技需要克服的偏見絕不止於性別,而探討科技如何受人的權力與價值觀影響,性別議題可說是個最好的試金石,讓我們一窺各種決策之下人性、情境、科技的互動。人工智慧最終發展是載是覆,就端看人類的智慧是否足以駕馭這把雙面刃了。


參考資料

1.亞馬遜發現招聘用人工智慧系統歧視女性,決定棄用亞馬遜AI徵才歧視女性挨轟- 國際

2.Buolamwini, J., & Gebru, T. (2018, January). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on fairness, accountability and transparency (pp. 77-91). PMLR.

3.Courtland, R. (2018). Bias detectives: the researchers striving to make algorithms fair, Nature. Accessed 23 July, 2018. Available: httpa.

4.打擊猖獗性犯罪 印度加裝AI監視器偵測女性表情

5.印度警方使用人臉辨識技術,在4天內發現近3000名失蹤兒童

6.Book: "Data Feminism"

7.暗黑的AI性與愛學者警告:性愛機器人有害- 國際、AI性愛機器人恐危害人類心理與道德專家籲管制[影] | 國際

8.Google 圖片辨識AI 工具將不再標記男女| TechNews 科技新報

9.高雄醫學大學性別研究所:Al 與社會—數據女性主義

10.性別化創新


本文轉載自《科技大觀園》(原文標題:人工智慧複製人類偏見,AI 與性別議題間的拉扯——高醫大性別所余貞誼專訪)。

延伸閱讀

>>AI助陣醫學、防疫-會與「個人隱私」難兩全嗎?

>>遏阻網路性誘拐!微軟出手-「關鍵字」揪戀童癖

>>她們都是工程師-Pyladies Taiwan女性的程式社群


「一個人為社會付出很辛苦,但一群人就不會寂寞。」每個人都可以用自己的方式成為倡議家:

立即加入【倡議+】社團:http://bit.ly/2JtBxB6

作者文章

廣告鬼才-盧建彰 圖/天下文化提供

廣告鬼才盧建彰 :「ESG溝通術,沒有良善思維,只是虛應故事」

2022/09/27
Google在更多國家地區提供以最少排碳量形式規劃導航路徑功能,加入火車選項 圖...

Google地圖幫你減碳!最少排碳導航路徑加入「火車」選項

2022/09/27
聯合國:實現全面性別平等 還要近300年時間 圖/pexels

實現「全面性別平等」要多久?聯合國:大概還要300年

2022/09/27
跟著零廢棄大廚煮飯,每樣食材都別扔 圖/pexels

蘋果碎末醋、薑汁發酵飲!跟著零廢棄大廚料理4道蔬食

2022/09/26
丟回收時,我們已經習慣依據寶特瓶、紙類、鐵鋁罐這樣的分類方式,但當中的細節其實非...

分類準確率高達 90%!TrashBot 推 18 萬元 AI 垃圾桶,讓消費者「無腦」丟垃圾

2022/09/26
歐洲40%消費者贊成增收「肉品稅」 圖/pexels

少吃肉,救地球!歐洲40%消費者贊成增收「肉品稅」

2022/09/25

最新文章

聯合國:實現全面性別平等 還要近300年時間 圖/pexels

實現「全面性別平等」要多久?聯合國:大概還要300年

2022/09/27
海洋永續興起,撿塑淨攤愛護海洋成為大家重視議題,也讓外界對海底世界更好奇,屏東縣...

不用下海也能到達海底世界!《屏東海底40米》帶你身歷其境

2022/09/23
台灣拜耳堅信「用科學的力量,解決全世界難題」理念,讓文旦柚從產地到餐桌,皆充滿數...

會思考的進化果園!台灣拜耳攜手創新夥伴 用「綠色科技」助攻果農

2022/09/23
台灣國境準備開放。 圖/pexels

國境準備開放、觀光客即將來 台灣真的準備好了嗎?

2022/09/22
財政部國產署挺綠能,至今年7月底,透過共同改良利用、委託經營、太陽光電標租等管道...

光電、風電、地熱都來吧!國產署釋出國有土地助「綠能」

2022/09/22
高雄秋冬季節空汙嚴重,民眾上下班通勤時,常發現八五大樓地標置身濃霧中。 圖/報系...

「有碳權的才是贏家!」專家力推碳權認證

2022/09/22

回應

Top